SCE News

Dr. Baek-Young Choi Explores the Internet of Things at NASA

Dr. Baek-Young Choi is an Associate Professor in the Department of Computer Science and Electrical Engineering at UMKC. She is a faculty fellow at the NASA Marshall Space and Flight Center and spent the previous summer researching wireless communication methods.

 

What is your area of interest?

My interests lie in the broad area of algorithms and systems development for diverse types of communication networks and cloud computing. My recent research has been focused on wireless communication methods for Internet-of-Things (IoT) applications and Software-Defined Networking. My work is around figuring out how to make all these physical devices talk to each other in a computing space. I imagine 10 years ago very few of you would have guessed we could one day talk to our watches and send a message to our mom, but that is happening now, called the internet of things – taking ordinary objects and making them extraordinary through connectivity.
 
How does that connect to your time at NASA?

As a faculty fellow at the NASA Marshall Space and Flight Center in Huntsville AL, I am working on reliable wireless communication schemes for wireless sensors around spacecrafts or space habitats in the Electronic Systems Branch of the Space Systems Department. Basically, I help figure out how a sensor on one side of the space craft collects and relays information to another side of the space craft. Unlike earth, where wireless technology work seamlessly, space creates a unique environment with unique needs.

Have you worked with them previously?

There are numerous needs of sensing in space applications, such as temperature, humidity, pressure and radiation, air and water quality, and crew’s vital signs. The benefits of wireless sensors include flexible placement, changes in location and number of sensors, enabled data gathering from a challenging area, faster deployment, and reduced weight of the spacecraft. However, besides the inevitable long-range communication with the Earth, wireless technology has not been deployed much in space systems. It is because the space environment poses unique and extreme challenges such as radiation from solar events and cosmic rays, extreme temperatures – both hot and cold – depending on its location relative to the Sun and the lack of the insulating atmosphere of the Earth. In the midst of the harsh operational environment, reliability is a primary concern of NASA’s missions, like the well-known quote, “Failure is not an option!” My reliable communication scheme was shaped while trying to understand the space environment and the physics of wireless communication as well as from the previous research experiences in IoT and software-defined approach.

 What were you hoping to accomplish over this summer?

This summer has been a truly enriching experience for me. After the Apollo program that accomplished sending humans to the Moon in the 60’s and early 70’s, NASA put their primary focus on space stations (Skylab, Spacelab and International Space Station) and shuttle (Columbia, Challenger, Discovery, Endeavor and Atlantis) programs for three decades. The space shuttle program has now ended, and scientific discoveries through the International Space Station are being continued with the assistance of the commercial sector. NASA now embarks on another bold exploration mission to send humans to Mars. I believe this is a particularly exciting time for technologists, as the mission requires overcoming unprecedented challenges. I look forward to continuing working with them and involving my students in investigating the technical issues that NASA faces.

Throughout this summer, in addition to meeting and working with people with similar research tracks, I have been privileged to meet many NASA scientists and engineers from very different and unique fields, including rocket scientists who develop propulsion systems; chemical engineers who turn urine into drinkable water; mechanical engineers who build gigantic space vehicle modules; physicists who design solar sailing satellites; and various scientists who analyze and study the data collected from space. I find NASA to be an incredible interdisciplinary organization where people from all walks of science and engineering imaginable come together for massive and complex missions. Most of all, I am impressed by their openness and passion for their work.

How might this experience play into your future work?

Prior to coming to NASA, I have been focusing on pretty earthly matters. Now, I feel I am very deep in space mode. For instance, I named my family vehicles as SLS and Orion after NASA’s space launch vehicle and spacecraft, respectively, that are under development for its journey Mars. 🙂