ECE 5582 Computer Vision
Lec 11: Object Re-Identification

Zhu Li
Dept of CSEE, UMKC
Office: FH560E, Email: lizhu@umkc.edu, Ph: x 2346.
http://l.web.umkc.edu/lizhu
Outline

- ReCap of Lecture 10
 - Logistic Regression
 - SVM

- Visual Object Re-Identification
 - MPEG CDVS Research
 - Google Landmark Challenge

- Summary
Logistic Regression

- Logistic Function:
 - Mapping linear function to [0 1].
 - Give a prob of observed X is has label 0 or 1 via logistic mapping

$$z = \sum_{i} w_i x_i + w_0 = WX$$

$$g(z) = \frac{1}{1 - e^z}$$
With Log loss function the problem is convex, and a gradient search solution can reach optimal.

- for each weights w_j, we have,
 \[
 \frac{\partial}{\partial w_j} L(w) = -(y \frac{1}{g(w^T x)} - (1 - y) \frac{1}{1 - g(w^T x)}) \frac{\partial}{\partial w_j} g(w^T x) \\
 = -(y \frac{1}{g(w^T x)} - (1 - y) \frac{1}{1 - g(w^T x)}) g(w^T x)(1 - g(w^T x)) \frac{\partial}{\partial w_j} w^T x \\
 = -(y(1 - g(w^T x)) - (1 - y)g(w^T x))x_j \\
 = (h(x) - y)x_j
 \]

- For a batch of m observed $\{x^{(i)}, y^{(i)}\}$, we can do batch descent, or stochastic gradient descent (SGD)
 \[
 \frac{\partial}{\partial w_j} L(w) = \frac{1}{m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})x_j
 \]

- matlab: `mnrrfit()`
ReCap of Lec 10

- Support Vector Machine:
SVM Summary

- What is a good classifier?
 - Not only good precision-recall performance at training (empirical risk function), but also need to consider the model complexity
 - Structural Risk: penalizing by \(VC \) dimension

- VC dimension
 - Is a good measure of model complexity
 - How many data points a certain classifier can shatter, higher the dimension easier to shatter (why kernel is good)

- SVM:
 - For linear hyperplane decision function, structural risk minimization is equivalent to \(gap \) maximization
 - Lagrangian Relaxation & Primal-Dual decomposition
 - \textit{Support Vectors}: mathematically, are data points that has non-zero Lagrangian associated with
 - \textit{Kernel Trick}: implicit mapping to higher dimensional richer structure space. Heuristic, may have overfitting risks (eg. RBF)
Lagrangian & Primal-Dual Decomposition

- Primal-Dual Decomposition,

 $L(w, b, \alpha) = \frac{1}{2} ||w||^2 - \sum_{i=1}^{n} \alpha_i y_i (w \cdot x_i + b) + \sum_{i=1}^{n} \alpha_i$

 - Let's write the Lagrangian

 $\frac{\partial L(w, b, \alpha)}{\partial w} = w - \sum_{i=1}^{n} \alpha_i y_i x_i$, \quad $\Rightarrow w = \sum_{i=1}^{n} \alpha_i y_i x_i$

 $\frac{\partial L(w, b, \alpha)}{\partial b} = - \sum_{i=1}^{n} \alpha_i y_i$, \quad $\Rightarrow \sum_{i=1}^{n} \alpha_i y_i = 0$

 - So the dual function

 $q(\alpha) = \inf_{w, b} L(w, b, \alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j (x_i \cdot x_j)$
% SVM is only dealing with a 2-class problem

% hogs svm
[n_img, kd]=size(hogs);
hogs_lbl = zeros(1, n_img); hogs_lbl(1:20) = 1;
svm_hogs = svmtrain(hogs, hogs_lbl);
% recog
rec_lbls = svmclassify(svm_hogs, hogs);

fprintf('
 error rate = %1.4f', sum(abs(hogs_lbl - rec_lbls'))/n_img);

stem(abs(hogs_lbl - rec_lbls'), '.'); hold on; grid on;
axis([1 160 0 5]); str=sprintf('err rate=%1.2f ',
sum(abs(hogs_lbl - rec_lbls'))/n_img); title(str);
SVM on HoG Performance

- 4 image sets from CalTech101: against the rest

- 2: Faces Easy

- 3: Leopards

- 26: Cougar Face

- 33: Dollar Bill
Outline

- ReCap of Lecture 10
 - SVM
- HW-2
- Visual Object Re-Identification
- Summary
Object Re-Id Outline

- The Problem and MPEG CDVS Standardization Scope
- CDVS Query Extraction and Compression Pipeline
 - Key point Detection and Selection (ALP, CABOX, FS)
 - Global Descriptor: Key points aggregation and compression (SCFV, RVD, AKULA)
 - Local Descriptor: Key points and coordinates compression
- CDVS Query Processing
 - Pair-wise Matching
 - Retrieval
 - Indexing
- CDVA Work
 - Handling video input
 - Image/Video Understanding
- Summary
Mobile Visual Search Problem

- **CDVS: Object Identification:** bridging the real and cyber world

- **Image Understanding/Tagging:** associate labels with pixels

- **airplane**
- **automobile**
- **bird**
- **cat**
- **deer**
- **dog**
- **frog**
- **horse**
- **ship**
- **truck**

- **Feature vector**
- **Output**

Input image: 400x400 (original size)

Grayscale image: 40x40

5x5 conv 32 filters

3x3 pooling stride 2

20x20x32 64 filters

2 layers of 3x3 conv 64 + 32 filters

Output: 31x1

Combined histogram: 768x1 computed from original image

Z. Li: ECE 479/5582 Computer Vision, 2021
CDVS Scope

- MPEG CDVS Standardization Scope
 - Define the visual query bit-stream extracted from images
 - Front-end: image feature capture and compression
 - Server Back-end: image feature indexing and query processing

- Objectives/Challenges:
 - **Real-time**: front end real time performance, e.g., 640x480 @30fps
 - **Compression**: Low bit rate over the air, achieving 20 X compression w.r.t to sending images, or 10X compression of the raw features.
 - **Matching Accuracy**: >95% accuracy in pair-wise matching (verification) and >90% precision in identification
 - **Indexing/Search Efficiency**: real time backend response from large (>100m) visual repository
What are the problems?

- Accuracy
- Speed
- Query Compression
- Localization
MPEG-7 core: Parts 1-5
MPEG-7 Parts 6-12
MPEG-7 Visual Signatures
Compact Descriptors for Visual Search

MPEG-7 CDVS, 8th FP7 Networked Media Concentration meeting, Brussels, December 13, 2011. (thanks, Yuriy !)
CDVS Data Set Performance

• Annotated Data Set:
 – Mix of graphics, landmarks, buildings, objects, video clips, and paintings.
 – Approx 32k images

• Distraction Set:
 – Approx 1m images from various places

• Image Query Size
 – 512bytes to 16K bytes
 – 4k~8k bytes are the most useful
The (Long) MPEG CDVS Time Line

<table>
<thead>
<tr>
<th>Meeting / Location / Date</th>
<th>Action</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>96th meeting, Geneva</td>
<td>Mar 25, 2011</td>
<td>Final CfP published Available databases and evaluation software.</td>
</tr>
<tr>
<td>97th meeting, Torino</td>
<td>July 18-23, 2011</td>
<td>Last changes in databases and evaluation software.</td>
</tr>
<tr>
<td>98th meeting, Geneva</td>
<td>Nov 26 - Dec 2, 2011</td>
<td>Evaluation of proposals</td>
</tr>
<tr>
<td>99th meeting, San Jose</td>
<td>Feb 10, 2012</td>
<td>WD</td>
</tr>
<tr>
<td>100th meeting, Geneva</td>
<td>March 4, 2012</td>
<td>WD</td>
</tr>
<tr>
<td>106th meeting, Geneva</td>
<td>Oct, 2013</td>
<td>CD</td>
</tr>
<tr>
<td>108th meeting, Valencia</td>
<td>Mar, 2014</td>
<td>DIS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Outline

- The Problem and CDVS Standardization Scope
- CDVS Query Extraction and Compression Pipeline
 - Key point Detection and Selection (ALP, CABOX, FS)
 - Global Descriptor: Key points aggregation and compression (SCFV, RVD, AKULA)
 - Local Descriptor: Key points and coordinates compression
- CDVS Query Processing
 - Pair-wise Matching
 - Retrieval
 - Indexing
- CDVA Work
 - Handling video input
 - Image/Video Understanding
- Summary
CDVS Pipeline

CDVS Query Processing Pipeline

- **KD** - Keypoint Detection
 - ALP, BFLoG, CABOX

- **FS** - Feature Selection

- **GD** - Global Descriptor from key points *aggregation*
 - SCFV, RVD, AKULA

- **LD** – Local Descriptor
 - SIFT compression, spatial coordinates compression
How SIFT Works

- Detection: find extrema in spatial-scale space
 - Scale space is represented by LoG filtering output, but approximated in SIFT by DoG

- Key Points Representation: 128 dim
Keypoint (SIFT) Detection

- **Main motivation**
 - Find invariant and repeatable features to identify objects
 - Many options, SURF, SIFT, BRISK, … etc, but SIFT still best performing
 - Circumvent the SIFT patent, which was sold to an unknown third company
 - SIFT patent main claim: DoG filtering to reconstruct scale space
 - Extraction Speed: can we be faster than DoG?

- **Main Proposals**:
 - Telecom Italia: ALP – Scale Space SIFT Detector (adopted!)
 - Samsung Research: CABOX – Integral Image Domain Fast Box Filtering (incomplete results)
 - Beijing University/ST Micro/Huawei: Freq domain Gaussian Filtering (deemed not departing far enough from the SIFT patent)
Telecom Italia: Gianluca Francini, Skjalg Lepsoy, Massimo Balestri

Key idea, model the scale space response as a polynomial function, and estimate its coefficients by LoG filtering at different scales:

\[h(x, y, \sigma) = \sigma^2 \cdot \left(\frac{d^2}{dx^2} + \frac{d^2}{dy^2} \right) g(x, y, \sigma) \]

\[h(m, n, \sigma) \approx \sum_{k=1}^{K} y_k(\sigma) \cdot h(m, n, \sigma_k) \]

\[y_k(\sigma) \approx a_k \sigma^3 + b_k \sigma^2 + c_k \sigma + d_k \]

LoG kernel at any scale can be expressed as l.c. of 4 fixed scale kernels
Express the scale response at \((x, y)\), as a 3rd order polynomial

\[p(x, y, \sigma) = \alpha_3(x, y)\sigma^3 + \alpha_2(x, y)\sigma^2 + \alpha_1(x, y)\sigma + \alpha_0(x, y) \]

The polynomial coefficients are obtained by filtering, where \(L_k\) is the LoG filtered image at pre-fixed scale \(k\):

\[
\begin{align*}
\alpha_3(x, y) &= \sum_{k=0}^{K-1} a_k \cdot L_k(x, y) \\
\alpha_2(x, y) &= \sum_{k=0}^{K-1} b_k \cdot L_k(x, y) \\
\alpha_1(x, y) &= \sum_{k=0}^{K-1} c_k \cdot L_k(x, y) \\
\alpha_0(x, y) &= \sum_{k=0}^{K-1} d_k \cdot L_k(x, y)
\end{align*}
\]

\begin{center}
\begin{tabular}{|c|c|c|c|c|}
\hline
\(k\) & \(a_k\) & \(b_k\) & \(c_k\) & \(d_k\) \\
\hline
0 & -0.2464 & 2.5021 & -8.2007 & 8.6432 \\
1 & 0.4934 & -4.5636 & 12.9824 & -10.8424 \\
2 & -0.2717 & 2.0108 & -4.0449 & 2.1204 \\
3 & 0.0140 & 0.1549 & -1.0565 & 1.3886 \\
\hline
\end{tabular}
\end{center}
ALP Scale Space Extrema Detection

- **ALP filtering scale space response as polynomials**

 - Scale Space Extrema: \((I \ast h)[430, 122, \sigma] \approx 2.85 \sigma^3 - 39.51 \sigma^2 + 172.65 \sigma - 172.61\)

 ![Scale Space Extrema Diagram](image1)

 ![Polynomial Graph](image2)

 - No Extrema (saddle point): \((I \ast h)[153, 356, \sigma] \approx 0.12 \sigma^3 - 1.06 \sigma^2 + 3.15 \sigma - 2.5\)

 ![No Extrema Diagram](image3)

 ![Polynomial Graph](image4)
Displacement refinement

- Scale response as a 2nd order polynomial function of displacement \((u, v)\)

\[
(I \ast h)[x - u, y - v, \sigma] \\
\approx \beta_5(x, y, \sigma)u^2 + \beta_4(x, y, \sigma)v^2 + \beta_3(x, y, \sigma)uv + \beta_2(x, y, \sigma)u + \beta_1(x, y, \sigma)v + \beta_0(x, y, \sigma)
\]
Repeatability vs VL_FEAT SIFT:
Gaussian Filter g_σ
Box Filters b_σ

Approximate DoG/LoG by a cascade of box filters that can offer early termination:

- Very fast integral image domain box filtering,
- The box filters are found by solving the following problem, sparse combination of box filters, via LASSO:

$$
\begin{align*}
\text{minimize} & \quad \frac{1}{2} \| g - Bh \|^2_2 + \lambda \| h \|_1 \\
\text{subject to} & \quad 1^T Bh = \alpha
\end{align*}
$$
residual = \|g - Bh\|_2

The influence of the used dictionary determines not only the quality of the approximation but also the number of boxes required.
CABOX Detection Results

More examples of keypoint detection using box filters.

Overlap: 85%

Overlap: 88%

- Algorithmically the fastest SIFT detector amongst CE1 contributions
- Ref: V. Fragoso, G. Srivastava, A. Nagar, Z. Li, K. Park, and M. Turk, "Cascade of Box (CABOX) Filters for Optimal Scale Space Approximation", *Proc of the 4th IEEE Int'l Workshop on Mobile Vision*, Columbus, USA, 2014
Feature Selection

Why do Feature Selection?

- Average 1000+ SIFTs extracted for VGA sized images, need to reduce the number of actual SIFTs sent.
- Not all SIFTs are created equal in repeatability in image match,
 - model the repeatability as a prob function \([\text{Lepsøy, S., Francini, G., Cordara, G., Gusmao, P. P. (2011). Statistical modelling of outliers for fast visual search. IEEE VCIDS 2011.}]\) of SIFT’s scale, orientation, distance to the center, peak strength, …, etc:
 \[
 r(\sigma^*, \theta, D, d, \rho, p_{\sigma\sigma}) = f_1(\sigma^*) \cdot f_2(\theta) \cdot f_3(d) \cdot f_4(D) \cdot f_5(\rho) \cdot f_6(p_{\sigma\sigma}).
 \]
- Use self-matching (m29359) to improve the offline repeatability stats robustness.

![Graph showing distribution of \(f(\sigma)\)](image)

![Self-matching via random out of plane rotation](image)
Illustration of FS via offline repeatability PMF

- SIFT peak strength pmf
- SIFT scale pmf
- Combined scale/peak strength pmf
Feature Selection - Repeatability Model

- SIFT repeatability model
Global Descriptor

Why need global descriptor?

- Key points based query representation is not stateless, it has a structure, i.e., SIFTs and their positions. This is not good for retrieval against a large database, complexity $O(N)$
- Need a “coarser” representation of the information contained in the image by aggregating local features, for indexing/hasing purpose.

CDVS Global Aggregation Works

- m28061: Beijing University SCFV: for retrieval/identification
- m31491: Samsung AKULA: for matching /verification
- M31426: Univ of Surrey/VisualAtom: RVD: similar to SCFV
Global Descriptor – SCFV (m28061)

- Beijing University SCFV – Scalable Compressed Fisher Vector
 - PCA to bring SIFT down from 128 to 32 dimensions
 - Train a GMM of 128 components in 32 dim space, with parameters \(\{u_i, \sigma_i, w_i\} \)
 - Aggregate \(m=300 \) SIFT with GMM via Fisher Vector, 1\(^{\text{st}}\), and 2\(^{\text{nd}}\) order,

\[
\begin{align*}
\nabla^X_{u_i} &= \frac{\partial \mathcal{L}(X|\lambda)}{\partial u_i} \\
&= \frac{1}{\sqrt{300w_i}} \sum_{t=1}^{300} \gamma_t(i) \left(\frac{x_t - u_i}{\sigma_i} \right) \\
\nabla^X_{\sigma_i} &= \frac{\partial \mathcal{L}(X|\lambda)}{\partial \sigma_i} \\
&= \frac{1}{\sqrt{600w_i}} \sum_{t=1}^{300} \gamma_t(i) \left[\left(\frac{x_t - u_i}{\sigma_i} \right)^2 - 1 \right] \\
\gamma_t(i) &= p(i|x_t, \lambda) = \frac{w_ip_i(x_t|\lambda)}{\sum_{j=1}^{128} w_jp_j(x_t|\lambda)}
\end{align*}
\]

where \(\gamma_t(i) \) is the prob of SIFT \(x_t \) being generated by GMM component \(i \),
SCFV Distance Function

- The SCFV has 32x128 bits, for the 1st order Fisher Vector, and additional 32x128 bits for the 2nd order FV.
- Not all GMM components are active, so an 128-bit flag \([b_1, b_2, \ldots, b_{128}]\) is also introduced to indicate if it is active. Rationale: if not many SIFTs are associated with certain component, then the bits it generates are noise most likely.
- Distance metric:

\[
S_{X,Y} = \frac{\sum_{i=1}^{128} b_i^X b_i^Y w_{Ha(u_i^X, u_i^Y)} (32 - 2Ha(u_i^X, u_i^Y))}{32 \sqrt{\sum_{i=1}^{128} b_i^X} \sqrt{\sum_{i=1}^{128} b_i^Y}}
\]

- A lot of painful work on GMM component turn on logic optimization to reach a very high performance.
- Very fast due to binary ops, can short list a 1m image data base within 1 sec on desktop computer.
SCFV Performance

- Matching/Verification (TPR @ 1% FPR)

- Retrieval/Identification (mAP)
SIFT Descriptor Compression

- VisualAtoms/Univ of Surrey: a handcrafted transform/quantization scheme + huffman coding, low memory cost, slightly less performance (compared to PVQ), adopted.

- Only binary form is received, cannot recover the SIFT

\[
i\tilde{v}_j = \begin{cases}
-1 & \text{if } i\cdot v_j \leq i\cdot QL_j \\
0 & \text{if } i\cdot v_j > i\cdot QL_j \text{ and } i\cdot v_j \leq i\cdot QH_j \\
+1 & \text{if } i\cdot v_j > i\cdot QH_j
\end{cases}
\]

```
Transform A
v_0 = (h_2 - h_6)/2
v_1 = (h_3 - h_7)/2
v_2 = (h_0 - h_1)/2
v_3 = (h_2 - h_3)/2
v_4 = (h_4 - h_5)/2
v_5 = (h_6 - h_7)/2
v_6 = ((h_0 + h_4) - (h_2 + h_6))/4
v_7 = (((h_0 + h_2 + h_4 + h_6) - (h_1 + h_3 + h_5 + h_7))/8
```

```
Transform B
v_0 = (h_0 - h_4)/2
v_1 = (h_1 - h_5)/2
v_2 = (h_7 - h_0)/2
v_3 = (h_1 - h_2)/2
v_4 = (h_3 - h_4)/2
v_5 = (h_5 - h_6)/2
v_6 = ((h_1 + h_5) - (h_3 + h_7))/4
v_7 = (((h_0 + h_1 + h_2 + h_3) - (h_4 + h_5 + h_6 + h_7))/8
```
Outline

- The Problem and CDVS Standardization Scope
- CDVS Query Extraction and Compression Pipeline
 - Key point Detection and Selection (ALP, CABOX, FS)
 - Global Descriptor: Key points aggregation and compression (SCFV, RVD, AKULA)
 - Local Descriptor: Key points and coordinates compression
- CDVS Query Processing
 - Pair-wise Matching
 - Retrieval
 - Indexing
- CDVA Work
 - Handling video input
 - Image/Video Understanding
- Summary
Diagram of Image Matching

- First local features are matched,
- if certain number of matched SIFT pairs are identified, then a Geometric Verification called DISTRAT is performed, to check the consistence of the matching points via distance ratio check.
- For un-sure image pairs, the global descriptor distance is computed and a threshold is applied to decide match of non-match
Matching Performance (@ 1% FPR)

- **Image Matching Accuracy:**
 - Mix of graphics, landmarks, buildings, objects, video clips, and paintings.

- **Image Identification Accuracy:**
 - For graphics (CD/book cover, logos, papers), paintings, the performance is in 90% range
 - For objects of mixed variety, 78% in average.
 - For buildings/landmark, the performance is not reflective of the true potential, as the current data set has some annotation errors.
CDVS Retrieval

Retrieval Pipeline

- Short list is generated by GD based k-nn operation via:
 \[d(R, Q) = \frac{\sum_{i=1}^{512} b_i^Q b_i^R W_1 H_a(u_i^Q, u_i^R) W_2 u_i^Q (D - 2H_a(u_i^Q, u_i^R))}{(\sum_{i=1}^{512} b_i^Q)^{0.3} (\sum_{i=1}^{512} b_i^R)^{0.3}} \]

- Then for the short list of m candidates, do m times local descriptor based matching and rank their matching scores
MAP is computed across all query results as the average precision over the recall.

- MAP favours systems which return relevant documents fast.
- Precision-biased

\[
MAP = \frac{0.564 + 0.623}{2} = 0.594
\]
CDVS Retrieval Performance

- Retrieval Simulation Set Up
 - Approx. 17k annotated images mixed with 1m+ distraction image set
 - Short Listing: retrieve 500 closest matches by GD and then do pair wise matching and ranking
 - Data sets

1. Mixed Graphics
2. Paintings
3. Video Frames
4. Buildings/Landmarks
5. Common Objects

![mAP graphs for different datasets and query rates]
MBIT (multi-block index table) Indexing

- GD is partitioned into blocks of 16 bits, and inverted list built.
- Shortlisting is by weighted scoring on block wise hamming distance

Algorithm: MBIT Searching

Input: Query $B_q = \{b^q_m\}_{m=1}^{1024}$, MBIT $T = \{T_m\}_{m=1}^{1024}$, speedup ratio T, difference bits D.

Output: The shortlist $\{B_k\}_{k=1}^{L}$, $L = 500$.

1. Initialize $s(q, n) = 0$, $n = 1 \ldots N$.
2. for $m = 1$ to 1024 do
4. if the $\frac{m+1}{2}$-th Gaussian of B_q is not selected then
5. continue;
6. end if;
7. for $d = 0$ to D do
8. Enumerate binary vectors $\{h_d\}$ with d-bit differences with b^q_m.
9. For each image n in the buckets $T_m(h_d)$, update $\#_{n,d} = \#_{n,d} + 1$.
10. end for
11. end for
12. for $n = 1$ to N do
13. Update $s(q, n) = \sum_{d=0}^{D} \#_{n,d}$;
14. end for
15. Sort the image list by their voting score in descending order.
16. Add descriptors of top $\frac{N}{T}$ images in the ordered list into subset $\{B_k\}_{k=1}^{K}$.
17. Run an exhaustive search within $\{B_k\}_{k=1}^{K}$ and sort the list by Hamming distance.
18. Return the first $L = 500$ images.
Selecting 6-bits segments that are most efficient in discriminating for shortlisting, allow for permutation of bits

Shortlisting by weighted segment hamming distance also reflecting the segment entropy

Outline

- ReCap of Lecture 10
 - Logistic Regression
 - SVM

- Visual Object Re-Identification
 - MPEG CDVS Research
 - Google Landmark Challenge

- Summary
2018 Google Landmark Recognition Challenge

- **Data Set:**

- **Challenges**
 - Recognition: 1:1
 - Retrieval: 1:N
 - Dataset URL: https://www.kaggle.com/google/google-landmarks-dataset
Deep feature aggregation + RANSAC

Deep learning features aggregation

- Classification loss not working

Instead need to learn a metric:
 - $x = f(I)$: deep learning to extract feature x: eg. $512 \times (7 \times 7)$ from VGG16
 - $y = g(x)$: learn a local (linear) metric: e.g. $y = FV(x)$
Random Samples Consensus

- select 4 matching pairs in random, run SVD based homography estimation (HW-1) from it, and check how many points pairs are in agreement
- keep doing until we select the one that best fits
- SoftMax not working (1m labels!)
 - Don’t train a landmark classifier
 - Metric learning for training descriptors or use pre-trained
 - k-NN classifier

- Combine CNNs with classical approaches
 - Global CNN-based descriptors (GeM)
 - Local features and spatial verification (SP class)

\[C = f(A) + \lambda \cdot g(B) \]
GeM + SP

- Rank #3 solution for Google Landmark Challenge
 - GeM to create a shortlist:

 ![Diagram of GeM + SP process]

 - Spatial Matching for re-ranking: DELF local feature

 - Tentative matches (ASMK)
 - Spatial verification (SP) [5]

 ![Images of spatial matching examples]

Summary

- MPEG CDVS offers the state-of-art tech performance in visual object re-identification accuracy, speed, and query compression

- Amd work:
 - A recoverable SIFT compression scheme, currently SIFT cannot be recovered from bit stream
 - 3D key points, wide adoption of RGB+Depth sensors.
 - Non-rigid body object identification

- What deep learning brought:
 - Richer set of features from classification networks, e.g. VGG, ResNet
 - Aggregation opportunity at different stages of convolutions.
Key References

- Test Model 11: ISO/IEC JTC1/SC29/WG11/N14393
- SoDIS: ISO/IEC DIS 15938-13 Information technology — Multimedia content description interface — Part 13: Compact descriptors for visual search
- ALP: m31369 CDVS: Telecom Italia’s response to CE1 – Interest point detection
- RVD: m31426 Improving performance and usability of CDVS TM7 with a Robust Visual Descriptor (RVD)